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Abstract

This paper presents a new technique for the solution of the well-known form finding problem in membrane struc-
tures. The technique proposed is based on the updated reference configuration method proposed by Bletzinger [Pro-
ceedings of the IASS Colloquium on Structural Morphology: Towards the New Millenium, Nottingham, 1997] in which
an area functional is minimised within the context of a finite element discretisation. In this paper an additional
functional term is introduced with the aim of minimising the mesh distortion during the form finding process. This new
term provides in-plane stiffness which prevents the emergence of mechanisms without the need for ad hoc changes of the
tangent matrix. As a consequence of this additional strain energy term, the form finding process can be viewed as a
standard large strain membrane analysis with a specific choice of hyperelastic strain energy function. This implies that it
can be implemented in any standard code as an additional constitutive model. Two well-known simple examples of
form finding will be presented to illustrate the method proposed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Form finding is a well-known mathematical problem (see for instance Otto, 1967). It implies finding the
surface with a minimum area for a given fixed boundary. In physical terms it results in surfaces which, like
soap films, are in self-equilibrium with a uniform state of isotropic stress. The problem is of engineering
significance in the design of tension membrane structures, which are becoming increasingly popular as an
attractive way of providing temporary or semi-permanent cover for outdoor areas.

Traditionally, form finding has been solved using dynamic relaxation techniques in the context of simple
truss networks or linear triangular meshes (Barnes, 1975; Wakefield, 1979, 1998). The above techniques
require specialist software and have no reliable means of controlling the in-plane distortion of the finite
element mesh used to describe the membrane. More recently Tabarrok and Qin (1992) and Bletzinger
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(1997) have proposed techniques based on an incremental Newton-Raphson method. In particular
Bletzinger (1997) has introduced the concept of updated reference configuration as an artificial initial
membrane position, which is iteratively updated during the form finding process. An extensive set of ref-
erences on the subject of form finding can be found in Motro (1999).

The problem of in-plane mesh distortion can be easily illustrated by considering the case where the
prescribed boundary happens to lie on a plane. Obviously, the solution is then a flat surface on the same
plane. Unfortunately, the nodes of a finite element description of this surface can lie anywhere on this plane
without affecting the solution. This implies a lack of in-plane stiffness of the finite element model leading to
a singular tangent stiffness matrix. In Bletzinger (1997) this problem is overcome by a modification of the
initial stress component of the tangent stiffness based on the artificial reference configuration.

The technique proposed in this paper is similar to the method introduced by Bletzinger in that a
functional describing the total mesh area is constructed and minimised with a standard Newton—Raphson
process. However, in-plane stiffness is provided by an additional functional which measures the amount of
shear distortion in the model from the initial or reference configuration to the current shape. In this way,
minimising the combined functional leads to a balance between minimum area and minimum shear dis-
tortion in the mesh. At the end of the analysis the final surface shape can be used as a new reference
configuration and the solution process is in this way iteratively repeated until the area is minimised. The
method proposed can be viewed as a specific case of a hyperelastic constitutive equation for membranes and
can therefore be easily implemented within the context of standard finite element large strain membrane
analysis (see for instance Oden and Sato, 1967; Argyris et al., 1977; Gruttman and Taylor, 1992; De Souza
Neto et al., 1995; Kyriacou et al., 1996; Bonet et al., 2000).

In order to illustrate the technique proposed, two well-known examples will be described: a catenoid (or
revolution catenary) and Scherk’s surface (see for instance Bletzinger, 1997). In the first case a comparison
against the analytical solution will be shown and in both cases the convergence of the area and distortion
energy will be plotted as the form finding process takes place.

2. Area minimisation

The aim of this section is to define the main functional which, after minimisation, will lead to a minimum
surface area. The section will show how this functional can be expressed in the form of a pseudo-hyper-
elastic constitutive equation for which the corresponding Cauchy stresses are uniform and isotropic, that is,
no shear stress is present in the membrane.

2.1. Area functional

Consider a general membrane in its current configuration as shown in Fig. 1. The geometry of the
membrane is defined by a mapping x = ¢(§) from a two-dimensional parametric plane to its current
configuration. In order to minimise the total surface area, the following functional I, is defined:

,(¢) ZNo/da (1)

where N, represents an arbitrary parameter chosen to have units of force per unit length so that it will later
describe the value of the final uniform stresses on the membrane at the equilibrium configuration. (Note
that the term stress will be used throughout to denote force per unit membrane length. In this way any
reference to the membrane thickness, which is irrelevant to form finding problems, will be avoided.)



J. Bonet, J. Mahaney | International Journal of Solids and Structures 38 (2001) 5469-5480 5471

A
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Fig. 1. Membrane geometry definition.

The current element of area can be related to the area in the parametric plane by means of the deter-
minant of the metric tensor C (also known as the Cauchy—Green deformation tensor, see for instance Bonet
and Wood, 1997) as:

da = vV detCd4, (2)
where C is defined as:

C =F"F; F:ng):% (3)

0§
Eq. (2) enables the functional defined by Eq. (1) to be rewritten as:

I, (¢) = Ny / Vdet Cd4e (4)

With the eventual aim of constructing an artificial constitutive model that recreates the area functional
defined by Eq. (1), consider an arbitrary reference membrane configuration as shown in Fig. 1. This
configuration can be interpreted as the starting position of the membrane in a fictitious large strain de-
formation process and is defined by a mapping X = ¢,(&) with associated Cauchy-Green deformation
tensor C; given by:

09
COZFOTFO; Fozvéd’o:a*&o (5)
The element of area at this artificial reference configuration is related to the element of area at the para-
metric plane via the equation:

dd = \/detCod4: (6)

This enables the area functional (4) to be expressed in the form of a strain energy potential from the ar-
tificial initial configuration to the final membrane state as:

I, (p) = /A w,(C, Cy)dA (7)

where the pseudo-strain energy function per unit initial volume is easily derived by combining Egs. (4) and
(6) to give, after simple algebra:
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¥,(C,Cy) = Nyy/ det(CC, ") (8)

Note that despite the appearance of C, in the definition of this strain energy function, the actual final
functional IT,(¢) is in fact entirely independent of the initial configuration chosen.

2.2. Stress tensor

The minimisation of functional (7) with respect to the final membrane configuration is expressed in terms
of the directional derivative of I, in the direction of an arbitrary virtual velocity dv compatible with the
boundary conditions as:

DI1,[8v] = % IT, (¢ +edv) =0 9)

e=0

Substituting the area functional into the above equation from Eq. (7) yields, after simple algebraic ma-
nipulations, the equilibrium equation as:

DI, [6v] = /Fsa(c, Co) : Vedvdd =0 (10)
A

where the term S, denotes the second Piola—Kirchhoff stress at the parametric plane and is defined as:

_AP,(C,Cy) d O
A Te 2N06C{ det (CCy) (11)

After tedious but standard algebra (see for instance Bonet et al., 2000), the second Piola—Kirchhoff tensor
emerges from the above equation to give:

S, = Noy/ det(CC,") C! (12)

Although Eqgs. (10) and (12) can be used as the basis for a finite element discretisation, it is instructive to
rewrite the equilibrium Eq. (10) with respect to the current configuration. For this purpose, note first that
the gradient of the virtual velocity with respect to the parametric coordinates can be related to the standard
Cartesian gradient as:

Vedr = (VOv)F (13)

With the help of this equation it is easy to show that the equilibrium equation can be equally expressed in
the final membrane configuration in terms of the Cauchy stress tensor ¢, as:

d4
DI1,[3v] = / 6, : Vdvda = 0; o, = (d—)FSaFT (14)

a a
Substituting Eq. (12) into the second part of the above equation and using Eqgs. (2) and (6) for the initial
and current area, as well as Eq. (3) for the current Cauchy—Green tensor gives the Cauchy stress tensor as:

0, :N()I (15)

where I denotes the unit or identity matrix. It is clear from the above equation that, as intended, the state of
stresses that results from the pseudo-strain energy functional defined above is uniform and isotropic
throughout the membrane.
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2.3. Constitutive tensor

Eq. (10) is clearly nonlinear with respect to the current membrane configuration. Its solution in the
context of a finite element procedure will therefore be based on a Newton—Raphson type of iteration. This
iterative process will necessitate the second derivative of the functional in order to construct a suitable
tangent stiffness matrix. For this purpose, Eq. (10) is differentiated in the direction of an arbitrary incre-
mental displacement # from the current configuration to give,

DI, (v, u] = /A (F'Veu) : C, : (F'Vedv)dd + /A S, [(Ven)(Veon)| s (16)

The second term in the equation above will lead to the initial stress matrix after suitable finite element
discretisation, whereas the first term contains the Lagrangian elasticity tensor C, defined by:

oS, 0 , _ - _ _
Co=256=2MN3c { det(CC,") C 1} = Noy/ det(CC,H[C' o C' — 9] (17)
and the fourth order tensor ¥ is:
6= 2% G = (€€, (C(C) (18)
- oC ’ KL — IK JL IL JK

3. Distortion minimisation

The functional defined above should in theory lead to a membrane configuration that minimises the total
surface area. However, in practice a solution can rarely be achieved as the tangent operator defined in
Section 2 is in fact singular. This singularity is easily illustrated in the trivial case where the boundary
conditions are such that the analytical solution is a plane. In this case, any movement or displacement of the
membrane on the plane and within the designated fixed boundary will lead to the same total surface area.
Physically, all such movements are energy free and, consequently, the deformation model described so far
contains an infinite number of in plane mechanisms. In practical terms, the stiffness matrix that will emerge
from the finite element discretisation of Eq. (16) will be singular. This singularity has been circumvented in
Bletzinger (1997) by artificially modifying the initial stress component of the tangent stiffness matrix. Al-
though this procedure removes the singularity of the tangent matrix and appears to work satisfactorily in
many cases, no additional terms are added to the internal forces used to obtain equilibrium. Hence, the
inherent lack of in-plane stiffness is still present in the equations.

The procedure developed here is more robust and is based on the definition of an additional distortion
energy that will provide the required in-plane stiffness. This new strain energy term is defined in such a way
that it leads to purely deviatoric stresses. In this way it will interfere as little as possible with the isotropic
stress Ny defined above which is the one responsible for driving the membrane towards an equilibrium
position that minimises the total surface area.

3.1. Distortion

Consider again the fictitious deformation of the membrane from the arbitrary initial configuration to the
final position. In order to define the distortion strain energy, it is first necessary to isolate the area pre-
serving component of this deformation process. Following the standard procedure described in detail in
Bonet and Wood (1997), the isochoric component of the right Cauchy—Green tensor is defined as:
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C=(detC)?C; G = (detCy)"*C, (19)
Note that by construction detC = detCy = 1.

3.2. Distortion functional

In order to correct the rank deficiency of the surface area functional, an augmented functional is now
defined as:

T, b) = T() + Tan( b); Tan(b, o) = / W4 (C, Gy)dd (20)

where the distortion strain energy Yy can, for instance, be defined using the neo-Hookean model com-
monly used to describe hyperelastic rubber (Bonet et al., 2000) to give,

. A | I
Vi (C, Co) = E“(C :C' -2) (21)

The coefficient p in this expression describes a fictitious shear modulus of the membrane. Clearly, the ratio
between u and N, determines the relative importance of each term in Eq. (20). The smaller this ratio is, the
less effect the above distortion functional will have over the final equilibrium configuration. Ideally, one
should take u = 0 in order to ensure that the equilibrium position coincides with the minimum surface. As
this is not possible, one should use as small a value as possible compatible with a nonsingular tangent
modulus. Practical advice on how to achieve this will be given in the following sections.

It is also crucial to note that, unlike the area functional defined in Section 2, the distortion functional is
not independent of the chosen reference configuration. In fact, the value of the distortion strain energy
returned by Eq. (21) will be small if the reference configuration is chosen to be close to the final equilibrium
configuration. This fact will be used in Section 4 to define an iterative scheme whereby the reference
configuration is continuously updated. This iterative procedure will ensure the final solution is independent
of the artificial shear modulus chosen.

3.3. Deviatoric stress tensor

The minimisation of the augmented functional now leads to an equilibrium equation similar in form to
expression (10) but with an additional deviatoric second Piola—Kirchhoff stress tensor term as:

DIT[dy] = / FS:Veovdd =0, S=S,+S (22)
A

where S emerges from the differentiation of the distortion strain energy with respect to the right Cauchy—
Green tensor to give,

S, - 26‘I’dis(C, C()) _ i |:\/ detC()
e M| Vaae
which after simple algebra leads to,

v detCy
M /dete

Note that this tensor is only deviatoric with respect to the metric C, that is S":C = 0, but its trace is in
general different from zero. The corresponding deviatoric Cauchy stress tensor is obtained using the second
part of Eq. (14) to give:

(c:c;h (23)

S = (€' —5(C: ¢ (24)
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f dCtC() _ _
¢ = 1o [FC,'F" —L(C: ;"I (25)

It is a simple exercise to show that the trace of ¢’ as defined above is indeed zero. Note also that as the
reference configuration approaches the final configuration C, will tend to C and therefore ¢’ will approach
Zero.

3.4. Deviatoric constitutive tensor

Finally, it is necessary to obtain the second derivative of the augmented functional in order to develop a
Newton—Raphson type of nonlinear iteration. For this purpose, differentiation of Eq. (22) now leads to:

DT1[ov,u] = / (F'Veu) : C: (F'V:dv) d4 + / S: [(véu)T(vgsv) d4 (26)

where the total elasticity tensor C is made up of the area component defined in Section 2.3 plus the dis-
tortion component given by:

oS’
— - =2 2
C (Da + Cd157 Cdls oC ( 7)
Differentiation of Eq. (24) leads eventually to the distortion elasticity tensor for the neo-Hokean model as:
vV det CO _ _ _ _ _ — _
Cais = p~———=RHC: CH(C'@C'+9)-CloC' - C e Cy! 28
d n \/m [2( 0 )( ) 0 0 ] ( )

4. Solution process
4.1. Newton—Raphson iteration

The minimisation of the combined area and shear distortion functional defined in Eq. (20) is achieved
within the context of a standard large strain finite element formulation (see for instance, Bonet et al., 2000).
Consequently, all kinematic variables, current and initial geometries, virtual velocities and displacements

are interpolated from nodal values via standard shape functions N;(&,,&,); I = 1,...,n. In this way the
equilibrium or first variation Eq. (22) becomes, after discretisation,

Ti(x)) = / FSV:N;d4 =0 (29)
A

And a Newton—-Raphson solution process is described by the standard update equations:
N
ZKUuJ =-T (xﬁ?); D = W, (30)
J=1

where the tangent stiffness matrix is obtained from the discretisation of Eq. (26) as:

i _
Ky =

2
6x,- 6N1 Ox; aNJ ) /
( A agﬁ aé’x B/Oagé agﬂ j y gLV ( 13 J) ( )

o,fB.y,0=1
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4.2. Form finding algorithm

In a typical form finding process, it is usually convenient, but not necessary, to start from a flat initial
mesh, as this can be more easily generated. The boundary constraints are then enforced as imposed dis-
placements on the boundary mesh points. If necessary, this can be achieved in a number of ‘load’ steps to
facilitate the convergence of the Newton—Raphson iteration. This initial ‘set-up’ phase is no different from
any standard large strain membrane analysis, with the exception that a very specific constitutive model is
used.

Once the boundary has reached its required position, a number of form finding steps are then necessary
to reach the final minimum surface. In each step the reference configuration is chosen as the final shape on
the previous step. In this way, the distortion component of the energy functional refers only to the in-
cremental motion of the surface and, as the shape converges to the final minimum surface, will have a
decreasing influence on the process. In the final steps, the incremental movement is minimal and it is es-
sentially the area functional (which is independent of the reference configuration) that is being minimised.
Note however, that even when the distortional contribution to the equilibrium equations is very small, its
contribution to the in-plane terms of the stiffness matrix does not diminish. This ensures that the tangent
matrix is not singular during the process.

5. Examples
5.1. Catenoid

The catenoid, or catenary of revolution, is a classic form finding problem, discussed in many authors,
such as Otto (1967) and Bletzinger (1997). Fig. 2 shows the catenoid with an inner radius of 5, an outer
radius of 15, and a height of 8. The mesh, initially planar, is unstructured, using 341 nodes and 613 linear
triangular elements. Given the axial symmetry of the problem only a quarter of the model is solved. Both u
and N, are set equal to 1.0.

The initial set-up takes place over 10 steps, during which the inner radius is raised from a height of 0 to
the maximum height of 8. Form finding takes places over eight more steps. A cut through the final shape is
compared against the analytical solution in Fig. 3, which shows an excellent agreement. Note that the mesh
is well distributed and all the elements have a ‘reasonable’ shape. For comparison the profile obtained with
a courser mesh containing only 103 elements is also shown. Fig. 4 shows the logarithmic decrease in shear
and area energy during form finding. Note that as predicted the shear or distortional energy becomes
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Fig. 2. Catenoid.
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Fig. 4. Catenoid — energy minimisation.

smaller as more form finding steps are taken. The final area achieved was 194.845, which is within 0.005%
of the exact area of 194.8547.

5.2. Scherk’s surface

Like the catenoid, Scherk’s surface is a classic form finding problem (Lewis, 1997; Bletzinger, 1997,
Maurin and Motro, 1997). In the example chosen here, the boundary is described by a unit cube. Again, for
convenience, the process starts from flat meshes in which boundary nodes are incrementally moved to their
final positions. Two meshes have been used in this example: a triangular mesh with 1200 elements and a
quadrilateral mesh consisting of 662 bilinear quads. The resulting final configurations are shown in Figs. 5
and 6. In both cases Ny = u=1.

The convergence rates of the area and distortional energies are shown in Figs. 7 and 8 respectively for
both meshes. The final areas of the quad and triangular meshes were 2.47101 and 2.47039 respectively.

In order to illustrate the importance of the shear distortional energy, the form finding process for the
quad mesh is repeated but now the value of u is linearly decreased every step down to 0.0025 in the final
step. The resulting shape is shown in Fig. 9 and clearly displays excessive mesh distortion. It is interesting to
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Fig. 7. Scherk’s surface — area energies.

observe that a similar detrimental effect to lowering the value of u is not observed for the case of triangular
meshes. In the case shown in Fig. 5, the value of y can be lowered during the form finding steps without the

appearance of significant mesh distortions.
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6. Concluding remarks

The paper has presented a new technique for the solution of the form finding problem expressed as a
surface with minimum area. The methods proposed leads to the definition of an artificial large strain hy-
perelastic constitutive model with two components, namely area strain energy and shear strain energy. The
first term simply measures the surface area whereas the second component gives a measure of the incre-
mental distortion from an arbitrary reference configuration. This second term is responsible for introducing
in-plane stiffness to the problem and preventing the tangent matrix from becoming singular. As the ref-
erence configuration is iteratively updated in a sequence of form finding steps, the shear component of the
functional becomes less significant but still provides the necessary stiffness.

The algorithm has been demonstrated with the help of two well-known geometrical problems, namely a
Catenoid and Scherk’s surface. Solutions using triangular and quadrilateral meshes have been obtained and
compared. For the Catenoid an analytical comparison is provided to demonstrate that the method pro-
posed converges to the analytical solution.

Acknowledgements

The authors would like to express their gratitude to Dr. R.D. Wood for many useful discussions.



5480 J. Bonet, J. Mahaney | International Journal of Solids and Structures 38 (2001) 5469-5480

References

Argyris, J.H., Dunne, P.C., Maasse, M., Orkisz, J., 1977. Higher order simplex elements for large strain — natural approach. Comp.
Meth. Appl. Mech. Engng. 16, 369-403.

Barnes, M.R., 1975. Applications of dynamic relaxation to the design and analysis of cable, membrane and pneumatic structures. Proc.
Int. Conf. Space Struct., Guildford.

Bletzinger, K.-U., 1997. Form finding of membrane structures and minimal surfaces by numerical continuation. Proc. IASS Coll.
Structural Morphology: Towards the New Millennium, Nottingham.

Bonet, J., Wood, R.D., 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge.

Bonet, J., Wood, R.D., Mahaney, J., Heywood, P., 2000. Finite element analysis of air supported membrane structures. Comp. Meth.
Appl. Mech. Engng. 47, 1-17.

De Souza Neto, E.A., Peric, D., Owen, D.R.J., 1995. Finite elasticity in spatial description: linearization aspects with 3-D membrane
applications. Int. J. Num. Meth. Engng. 38, 3365-3381.

Gruttmann, F., Taylor, R.L., 1992. Theory and finite element formulation of rubberlike membrane shells using principal stretches. Int.
J. Num. Meth. Engng. 35, 1111-1126.

Kyriacou, S.K., Schwab, C., Humphrey, J.D., 1996. Finite element analysis of nonlinear orthotropic hyperelastic membranes.
Computat. Mech. 18 (4), 269-278.

Lewis, W.J., Lewis, T.S., 1997. Form finding of structural configurations possesing minimum surface area — art or science. Proc. IASS
Coll. Structural Morphology: Towards the New Millennium, Nottingham.

Maurin, B., Motro, R., 1997. Density methods and minimal forms computation. Proc. IASS Coll. Structural Morphology: Towards
the New Millennium, Nottingham.

Motro, R. (Ed.),1999. Tensile structures. J. Space Struct. (special issue) 14.

Oden, J.T., Sato, T., 1967. Finite strains and displacements of elastic membranes by the finite element method. Int. J. Solid Struct. 3,
87-107.

Otto, F., 1967. Tensile Structures. MIT press, Cambridge, MA.

Tabarrok, B, Qin, Z., 1992. Nonlinear analysis of tension structures. Comp. Struct. 45, 973-984.

Wakefield, D., 1979. Dynamics relaxation analysis of pretensioned networks with flexible boundaries. IASS World Congress on Shell
and Spatial Structures, Madrid 1979.

Wakefield, D., 1998. Numerical modelling in tension structure design and construction. Int. Conference LSA98: Lightweight
Structures in Architecture, Engineering and Construction, 1998, Sydney, pp. 1-9.



